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Synthesis of Orthogonally Fused Conducting
Oligomers for Molecular Electronic Devices 1

James M. Tour,* Ruilian Wu, and Jeffry S. Schumm
Department of Chemistry and Biochemistry

University of South Carolina
Columbia, South Carolina 29208

Since the time of the first room-filling computers, there
has been a tremendous drive to compress the size of computing
instruments. In order to bring this desire to its extreme, it was
conceived that one may be able to construct single molecules
that could each function as a self-contained electronic
device. 2 , 3  Here we outline the convergent and flexible
synthesis of two different macromolecules that approach the
size necessary for molecular switch testing. Hence, the
feasibility of molecular electronic devices, whether the
architectures be of single molecule or ensemble
arrangements, may soon be experimentally addressed.

Recently. Aviram of the IBM Corporation suggested that
molecules -50 A long that contain a pro-conducting (non-
doped or non-oxidized system, hence insulating) chain that is
fixed at a 900 angle via a non-conjugated sigma bonded
network to a conducting (doped or oxidized system) chain
should exhibit properties that would make them suitable for
interconnecti, into future molecular electronic devices.
These devicc:, may be useful for the memory, logic, and
amplification computing systems. 4 1, in doped form, is an

H S S S_ 9

1

example of a pro-conducting/a/conducting molecule. Until
recently, all experimental studies on orthogonal systems had
dealt only with the spiro core of related molecules and no ? r ;
synthetic approach demonstrated incorporation of the -
oligomeric chains. 5 ,6  !hY

We described a facile approach to the core of two . *o-e.
molecules which fit the general class of systems necessary for ifiAt .
this electronic model. 7 The thiophene-based core (2) was
synthesized in two steps from the tetra-alkyne (3) by _______

treatment with Cp2Zr(n-Bu) 2 and S2 C! 2  followed by __Dialr__ lt-k/
bromodesilylation with Br2. The phenylene-based core (4) was A-cI1.lI4tV t " ',

prepared in a four step sequence from 2-aminobiphenyl. 7,8 In ">. .

4 ______or
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3
a single operation, we hoped to introduce the four branches
onto the core units. In order to keep the final products soluble,
it was necessary to use 3-alkylthiophenes as the branching
units. Alkylated phenylenes have inferior conductivities due
to the severe out of plane distortions of the consecutive aryl
units. 9 - 1 1

Scheme I

1. LDA Br\ 1. n-BuLi
Br - Me 3Si Br Me 3Si I

2. Me3 SiCI 2. 12
89% 97% 5
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R R
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6 , Bu3Sn / ~ ~ 'SiMe 32. 7, CI 2 Ni(dppp) S S S

3. LDA, n-Bu 3SnC1 8. R = CH 3
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Functionalized and alkylated thiophene trimers were
synthesized as shown in scheme I (yields listed for R = CH3 ). 1 2 "

14 When the silylated thiophene unit in 8 had a 3-methyl
substituent, desilylation was rapid upon silica gel
chromatography (even with amine-washed silica gel).
Carbocationic character was sufficiently stabilized in the
trimer (not the monomer or dimer) by both the P-silicon and
a-methyl to allow for this rapid protodesilylation. Thus we
chose to keep the terminal thiophene unit free of an alkyl
substituent. These trimers possesses several of the desired
properties. namely (1) a terminal tributylstannyl substituent
for attachment to the cores (2) alkyl groups for maintaining
the solubility, and (3) a terminal trimethylsilyl group for



future chemoselective modification of the final orthogonal
oligomers to permit adhesion to nanolithographic probes. 1 5

Treatment of the core 2 with excess 8 in the presence of
8 mol % of Pd(PPh3) 4 afforded the target orthogonal thiophene
system 10 in 86 % yield. 16 , 1 7 Similarly, the core 4 was treated
with 9 and 8 mol % of Pd(PPh 3 )4 to give the mixed phenylene-

thiophene spiro fused octamer 11 in 60 % yield. 1 8 Compounds

Me3Si SiMe3

H3C" H3C"S 3 H

H3C H3C CH3  CH3

M493S'

n-H9C4 n-H9 C4  C4Hg-n C4Hg-n

M3 S S S S S S ie
Me3Si k SiMe3

n'HgC4 114 Hg"n C4H9n

1 0 and I 1 are approximately 25 A and 30 A in length
(excluding the trimethylsilyl substituents), respectively, as
determined by MMX with extended it HUckel parameters. 19 Both
10 and 11 are soluble in many organic solvents which will
allow simple processing; however, without the alkyl
substituents, these materials are intractable. Interestingly,
while most fast atom bombardment mass spectra (FAB/MS)
resemble chemical ionization spectra in providing primarily
even-electron cations or anions (i.e. M+H), 2 0 both 10 and I I
readily showed M+ data in 3-nitrobenzyl alcohol (NBA) and o-
nitrophenyloctylether (ONPOE) matrices, respectively. 17,18
This is an indication of the ease of oxidation of these oligomers
which was confirmed in cyclic voltammetry studies on 10 that
showed two reversible waves with anodic peak potentials (Epa)

at 0.68 and 1.05 V. 2 1, 22

In order to understand the orthogonally fused systems
more fully, several oligothiophenes (shown below) were
prepared and their electrochemical properties were
investigated.23
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